Mid-Year Review Rocky Flats Initiative and ASTD Projects

Brian Larsen Kaiser-Hill Company, LLC March 6, 2002

D&D Needs

- In order to close the site by 2006, innovative approaches must be deployed in a number of areas that result in increased efficiencies and/or reducing worker hazards
- Relatively mature technologies for specific near term applications are necessary to meet the closure schedule.

D&D Technology Deployment Areas

- Containment Systems and Cutting Tools
 - Improved containment systems for size reduction
 - Improved cutting tools for size reduction of equipment
- Remote In-situ Size Reduction
 - Remotely operated system capable of in-place size reduction
- Decontamination for Shipment and Disposal w/o Size Reduction
 - Improved decontamination techniques
 - Improved characterization instrumentation
- Tank Sludge Removal
 - Non-aqueous, remotely operated techniques
- Beryllium Monitoring and Characterization
 - Instrumentation to provide real time monitoring
- Improved D&D and Radiological Instrumentation
 - Instrumentation and systems to improve efficiency and safety

- Improved containment systems to
 - remove workers from hazardous environment
 - support introduction of more aggressive cutting techniques
- Improved cutting to increase efficiency and safety of size reduction

Top: Manual size reduction using power tools in a containment tent

Bottom: Size reduction using plasma arc cutting in a second generation ITC

- Low profile, light-weight, portable, chipless cutters for removal of highly contaminated glovebox exhaust duct
- B771 project alone has over 12,500 ft of round, schedule 10 St-St, glovebox exhaust duct between 2 and 36 inches in diameter

Conceptual drawing of chipless duct cutter

- Phase II Inner Tent Chambers (ITC) to remove workers from radiological environment
 - Third generation of ITC
 - Larger, improved material handling, improved waste handling

New ITC being used for size reduction

• Metal-oxygen (magma fusion torch) exothermic cutting for thick metal items

• Investigation initiated into thick item cutting using cable wire saw

Metal-oxygen exothermic cutting rods for in-situ size reduction of thick material

Trentec Wire Saw

Remote In-situ Size Reduction System

 In-situ size reduction systems are installed and operated at the location of the component and remove workers from the hazardous environment.

In-situ size reduction system primary components: MSRS (top) Houdini (bottom)

Remote In-situ Size Reduction System

• Due to remote nature of the In-situ system aggressive cutting methods can be employed

X-Z Tool and Plasma Torch

- Decontamination of plutonium contaminated equipment to avoid (or minimize) size reduction and allow shipment of items as low level waste in large containers
- 25% or better reduction in TRU waste

Loading of decontaminated glovebox into SCO II container

• Structural foam for blocking/bracing items in waste containers keeps workers safely away from waste materials

Foaming waste cargo

- Use of a three step decontamination process to decontaminate gloveboxes to SCO
- Shipment of items as SCO is inherently safer and more efficient than size reduction

Glovebox decontamination nearly complete

 Closed loop hydrolasing system contains water media and removed material

Top: Manual (baseline) technique Bottom: Underside of closed loop system

- Steam injection of cerium nitrate for decontamination of tanks
- Non-heated application of cerium nitrate process to decontaminate gloveboxes

Steam injection system for cerium IV nitrate

Tank Sludge Removal

 Tank sludge removal and dewatering without addition of aqueous media

Tank 231B schematic

In Tank Vehicle

Tank Sludge Removal

• 1,000,000 gallon tank containing ~30,000 gallons of sludge

Top: ITV module mounted to tank Left: Inside of waste module

Evaluating 3 Technologies

- Microwave Induced Plasma Spectroscopy
 - Amzil Unit for Real-Time Air Monitoring
- Laser Induced Breakdown Spectroscopy (LIBS)
 - SEA Unit for Air and Swipe Analysis
- Calorimetric
 - Oakridge TN method
 - LANL refinements

Current Methods (Air Measurement)

- Air pump through a filter
- Submit filter to lab for digestion/ICP
- 3 days to 2 week turnaround
- \$20 \$30/sample

Typical Be contaminated equipment

Microwave Induced Plasma Spectroscopy

- Provide real-time low level quantitative results for air sampling
- Utilizes a 110V microwave source to generate a plasma directly in the sample air atmosphere
- Spectrometer used to read the peaks

Laser Induced Breakdown Spectroscopy

- Utilizes a laser pulse to generate a plasma "spark" on the sample filter
- Spectrometer used to read and quantify the peaks generated from the spark
- Laser and spectrometer are timed to work in unison.

Calorimetric Method

- Developed to provide inexpensive, fast, qualitative results for wet surface sampling.
- Similar methods for sampling as currently in use today.

• The D&D of Rocky Flats' nuclear facilities requires radiological instrumentation systems which improve the efficiency and safety of radiological measurements taken to support site closure

Left: Existing surface contamination instrument Right: Improved surface contamination instrument

- Unmanned platform utilized to survey exhaust stack for demolition
 - 170 ft tall stack ranging from 17 to 6 feet in diameter
 - 676 measurement points taken

Left: Inside of stack looking up Right: setup of survey platform

- Large area detector arrays and assist equipment being developed to improve efficiency of Pre-demolition Surveys
 - Baseline methodology uses standard hand held instrumentation

- Contamination detector improvements to allow exterior characterization of equipment as SCO
 - Investigating new CsI/NaI detector/counter combinations to improve sensitivity
- Baseline methodology requires internal access or coupon sampling

Annular Tanks - possible SCO candidates

FY02 Funding Allocations

- TTP: RF09DD21 Rocky Flats Initiative
 - Beryllium Monitoring/Characterization \$500K
 - Duct Cutting \$380K
 - Tank Sludge Removal \$200K
 - Structural Foam \$180K
 - Closed Loop Hydrolase System \$130K
 - Remote In-Situ Size Reduction \$50K
 - Cable Wire Saw \$200K
- TTP: RF10DD31 Decontamination
 - Cerium Nitrate Decontamination \$168K
 - Chemical Decontamination \$120K
 - Remote Sampling & Measurement of Concrete Walls \$100K
 - Decontamination of Zone I Exhaust Ducting \$125K

FY02 Funding Allocations

- TTP: RF10DD32 (ASTD) Remote In-Situ Size Reduction
 - Remote In-Situ Size Reduction \$146K additional to TTP RF19DD21
- TTP: RF10DD33 Upgrade Rad Instruments ASTD
 - External Characterization for SCO \$140K
 - Data Integration for D&D Waste Management (Waste Tracker) \$60K
 - Unmanned Stack Characterization Survey \$72K
- TTP: RF02DD41 Improved D&D Instrumentation ASTD
 - Large Area Detectors \$150K
 - Direct read Be monitor \$300K
 - Calorimetric Be Methods \$150K
 - Large Area Detectors \$150K
 - Remote Measurement Techniques for Contaminated Structures \$400K
 - Currently evaluating other potential applications

